Control Systems : Set 13 : LQR - Solutions

Prob 1 | Consider the double integrator system G(s) = s% given in control canonical form
X = 00 X+ L u
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a) Give the optimal LQR controller v = —Kx for the following weighting matrices
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We get three equations:
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which we solve to get

The control law is then

K=R'B"P=[a p]

b) Give the characteristic equation for the closed-loop system
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¢) Choose an o and B such that the closed-loop system is critically damped, with a natural
frequency of 5 rad/s.

det(s/ — (A— BK)) = =s’+as+p




From the characteristic equation, we see that w? = 25 = 3

Critical damping calls for ¢ = 1, and therefore

20w, =2-5=a=10



Prob 2 | Consider the system

6(s) = s+1

a) Give a state-space model in control canonical form

X=—X+u

y = ax

b) Design a state-feedback controller so that the closed-loop system has a pole at —2

det(s—(A—BK))=det(s—(-1-1-K))=s+1+K=0
—s=—-K-1

Setting our only pole to —2, we get K =1

¢) Suppose that a changes to 2a, how does the closed-loop pole change? Is this result sur-
prising? Why?

The pole depends only on A and B, so the pole does not change.

Based on our development of PID controllers, one would expect that changing the gain
of the system should change the pole location. Therefore, it might seem surprising
that this is not the case here.

We can understand this by looking at the difference between the state-feedback case
and the output-feedback case we considered in PID.

For this problem, our state is x = y/a, and our control law is u = Kx = gy. From
this we see that if o changes, our control law will scale accordingly. This is because
we’re not doing feedback on the output directly, but on a scaled version of the output,
the state.

d) Design an estimator for the system so that the estimator pole is 5 times faster than the
closed-loop pole.

The characteristic equation for the estimator is
det(s/ — (A—=LC))=det(s/I = (A= LC))=s+1+La=0
—s=—-1—-La=-5-2
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Therefore, we take L = =

e) Add a reference input to the controller so that the output tracks constant inputs in steady-
state



Compute the steady-state solution
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The controller is now
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f) Suppose that the controller was designed for o, but the real system has a value &. Does
your system track the reference?

Hint: Compute the transfer function from the reference to the output for the closed-loop
system, and then use the final value theorem.

All values in the above derivations will remain at the value a, as this was the value
used in the controller design. The only value that changes to & is for y = ax

Our controller is v = —X + %r.

The closed-loop system is
_ 2
X=—X+U=—X—X+—r
a
A " 9 .. 9. .2
X=(A—-LOX+LCx+Bu=(-1——a)8+ —ax—X+ —r
o' o' o'

Writing this in standard form we get

To calculate the DC-gain of the system we can convert to transfer function form, and
use the final value theorem
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The final value theorem gives the response to a step input of unit magnitude as
o () = Tin eT(e)s
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which we can see will be one only if o = &

g) Add an integrator to the system and repeat the controller and estimator design processes,
setting both closed-loop poles to —2. Show that it tracks reference inputs even if the value
of a used in the design is different from that of the real system.

Note: Use Matlab with various values of a and & to verify the result with the dcgain
function, or by plotting step responses, etc. If you do it with the final value theorem as in
the last question, you’ll have to compute a 3x3 matrix inverse. This can also be done with
the Matlab symbolic toolbox if you prefer.

We add an integrator to the system by augmenting the state. The resulting augmented
model is

We design the controller to have two poles at —2 this time

det(s_(A—BK»:det([é S]—([_i 8]—{3} K Kz]))

:S2+(K1+1)5_K2a:(S+2)2:52+45+4

So we choose K = [3 —4/a] and the controller is v = —3X + gxl

We only need an estimator for the real state of the system, and so we use the same
estimator as before L = %

With the parameter o changed to & the system equations are
_ . 4
X=—-X+u=—Xx—3X+—Xx
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X=r—y=r—ax
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X=(A-LOX+LCx+Bu=(-1— —a)x+ —ax—3%x+ —x
ol o ol




Writing this in standard form we get
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Converting to transfer function form (with the Matlab symbolic toolbox) we get

4s 440

T(s) =
2534+ 14552+ (135 +31)s +40

The final value theorem shows that the response to a step input is

. 1
s“—% sT(s)g =1



